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Abstract

To incorporate uncertainty in structural analysis, a knowledge of the uncertainty in the model
parameters is required. This paper describes efficient techniques to identify and quantify variability in the
parameters from experimental data by maximising the likelihood of the measurements, using the well-
established Monte Carlo or perturbation methods for the likelihood computation. These techniques are
validated numerically and experimentally on a cantilever beam with a point mass at an uncertain location.
Results show that sufficient accuracy is attainable without a prohibitive computational effort. The
perturbation approach requires less computation but is less accurate when the response is a highly
nonlinear function of the parameters.
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1. Introduction

Many applications are concerned with a response that depends on parameter values of the
system. This may be formally described by the equation

y ¼ fðxÞ, (1)

where x ¼ ½x1 x2 . . . xn�
T are parameters of the structure, for example thickness or material

properties, and y ¼ ½y1 y2 . . . ym�
T are the desired response quantities, for example natural

frequencies or point frequency-response functions (FRFs). Usually the parameters are assumed to
be known for the forward problem, or unknown but fixed for the inverse or model
updating problem [1]. In this paper, the parameters are assumed to follow a particular
robability distribution X , and hence the response will also follow a probability distribution,
denoted Y .
This paper will be concerned exclusively with probabilistic models of uncertainty. Other

uncertainty models [2], such as evidence theory, possibility theory, fuzzy logic, interval methods or
convex models, are equally valid, and the inverse problem based on measured data may also be
posed for these uncertainty models. Generally, probabilistic approaches perform well when there
is sufficient information available to define the underlying input distributions. It is precisely this
information that this paper seeks, and hence the proposed methods are valuable in the derivation
of probability density functions. However, similar approaches could be proposed based on other
models of uncertainty.
In most applications the probability distribution of the parameters is known while the

probability distribution of the response (or its low-order statistics) is sought. Well-established
methods are available to address this problem: the Monte Carlo method samples points of the
function f according to the distribution X ; the perturbation method approximates f by a low-
order polynomial centred on the mean value of x.
The knowledge of the probability distribution of the parameters is a precondition to apply any

uncertainty propagation method. However, there is very little literature concerned with the
estimation of the parameter probability density function. In some cases it may be possible to
directly measure samples of the parameters but often it is easier to measure the response. For
example it is easier to measure the global natural frequencies or FRFs than to measure localised
material properties such as densities, thicknesses or equivalent joint stiffnesses. The statistics of
the parameters may be inferred from the measurements, and this knowledge could then be applied
to new problems. The inverse problem of estimating the distribution of the parameters from that
of the response measurements is called uncertainty identification or quantification, and is the
subject of this paper.
Bayesian model updating [3–5] is a well-established procedure for refining parameter

uncertainty using experimental data (for example, to update the predicted reliability index of a
single structure), but no such procedure is widely available for quantifying irreducible uncertainty,
for example, to quantify the variability in a structure due to the uncertainties introduced by the
manufacturing process. Attempting to fill the gap, this paper develops an algorithm that
quantifies the parameter uncertainty by maximising the likelihood of the experimental data. This
algorithm is both reasonably efficient and accurate, while relying on the existing uncertainty
propagation methods. Mares et al. [6,7] recently developed a similar but different procedure,
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called the stochastic model updating method, where an experimental data cloud is converged upon
by a simulated data cloud generated by the Monte Carlo method.
Statistical methods have been used in model updating for many years. Usually the estimated

variance of the measurements and parameters is used to weight the different terms in a least-
squares procedure [1,8]. This is taken a stage further in the minimum variance estimation
methods, where the parameters that have the minimum variance are estimated [9,10]. It should
also be emphasised that this paper is not concerned with the choice of parameters to update or
with regularisation. This has been the subject of significant research [1,11], and most of the issues
that are important in standard model updating will be equally important for uncertainty
quantification.
2. Maximum likelihood estimation

To solve the inverse uncertainty propagation problem one might be tempted to invert Eq. (1) as

x ¼ f�1ðyÞ (2)

and use the standard uncertainty propagation methods. The difficulty with this approach is
determining f�1, since the inversion is usually ill-conditioned or even impossible. A better
alternative is to use maximum likelihood estimation, which also allows one to use the existing
uncertainty propagation methods, and do not require inverting f.
For estimation purposes it is assumed that the parameters follow a certain probability

distribution, X , belonging to a probability distribution family, denoted by �, and written as

X�DðhxÞ, (3)

where hx are the parameters of the family to be estimated. For a multivariate normal distribution,
the parameters would be the mean vector lx and covariance matrix Rx. For a given hx the
response probability density function f ðyjhxÞ can be approximated by using one of the uncertainty
propagation methods.
Let Y0 be a set of N response measurements ½y0ð1Þ y

0
ð2Þ . . . y

0
ðNÞ�. The measurements are assumed to

be independent; therefore, the measurement likelihood is

LðhxÞ ¼ f ðy0ð1Þ; y
0
ð2Þ; . . . ; y

0
ðNÞjhxÞ ¼

YN
i¼1

f ðy0ðiÞjhxÞ. (4)

The log likelihood is more tractable and given by

lðhxÞ ¼ log LðhxÞ ¼
XN

i¼1

log f ðy0ðiÞjhxÞ. (5)

The maximum likelihood estimator ĥx is the value of hx for which lðhxÞ attains a maximum.
A non-gradient-based optimisation method such as the simplex method can be employed for the
maximisation, allowing the use of standard uncertainty propagation methods without alteration.
The drawback of this approach is its iterative nature. The uncertainty propagation methods are

by themselves computationally intensive and to repeatedly execute these methods in an iterative
optimisation loop would be prohibitive for most interesting applications. Ways to efficiently
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integrate the maximum likelihood estimation with the two most common propagation methods is
the purpose of this paper.
2.1. Perturbation method

It is assumed that the uncertain parameters follow a multivariate normal distribution

X�Nnðlx;RxÞ, (6)

where n is the number of variables, lx is the mean vector and Rx is the covariance matrix. In
theory this incurs no loss in generality since random variables may be transformed into
uncorrelated Gaussian variables exactly using the Rosenblatt transformation, or approximately
using the Nataf transformation [2,12]. The case where all of the elements of lx and Rx are
independent will be considered. However, there are examples where this assumption is not valid,
such as random fields [13] where there is a dependency structure. In a spatial AR(1) random field,
lx and Rx could be fully described by three scalars, namely the mean m, variance s and correlation
length L.
For the perturbation method Eq. (1) is first expanded as

y ¼ fðx0Þ þ
Xn

i¼1

qf
qxi

ðx0Þ � ðxi � x0
i Þ þ

1

2

Xn

i¼1

Xn

j¼1

q2f
qxiqxj

ðx0Þ � ðxi � x0
i Þ � ðxj � x0

j Þ þ � � � (7)

around the point x0 ¼ ½x0
0 x0

1 . . . x0
n�
T, which is assumed to be in the vicinity of lx. The effect of the

choice of x0 will be considered in more detail later. Taking only the first-order terms, Eq. (7) can
be rewritten as

y ¼ f0 þ J0ðx� x0Þ, (8)

where f0 and J0 are the function and its Jacobian, respectively, evaluated at the point x0.
Refs. [14,15] give more detail on how to evaluate the Jacobian for natural frequencies. From
Eqs. (6) and (8) the probability density function of y may be approximated by

Y�Nmðly ¼ f0 þ J0ðlx � x0Þ;Ry ¼ J0
T
RxJ

0Þ (9)

and its probability density function is

f̂ ðyjlx;RxÞ ¼ ð2pÞ�m=2
jRyj

�1=2e�ðy�lyÞ
TR�1

y ðy�lyÞ=2. (10)

A detailed study of the distribution of eigenvalues can be found in Ref. [16]. Replacing f ðy0ðiÞjhxÞ in
Eq. (5) by the approximation given in Eq. (10) yields

lðlx;RxÞ ¼ �
1

2
Nm log 2pþ N log jRyj þ

XN

i¼1

ðy0ðiÞ � lyÞ
TR�1

y ðy0ðiÞ � lyÞ

 !
. (11)

Ideally the linearisation point x0 would be equal to the mean value lx but since the latter is not
known a priori a guess must be made for its initial value. Depending how far this initial guess is
from the estimated l̂x, it may be necessary to recompute f

0 and J0, to more accurately describe the
response surface near lx. It is unnecessary, however, to perform the computation at every



ARTICLE IN PRESS

J.R. Fonseca et al. / Journal of Sound and Vibration 288 (2005) 587–599 591
evaluation of Eq. (11). For most applications, approximate knowledge of the mean value is
available, reducing the need for such recalculation.

2.2. The Monte Carlo simulation method

Let X00 be a set of M samples of the parameters ½x00
ð1Þ x

00
ð2Þ . . . x

00
ðMÞ�, and Y00 the respective response

set ½y00ð1Þ y
00
ð2Þ . . . y

00
ðMÞ�. If the uncertain parameters are sampled according to their probability

density function f ðxÞ then the response probability density function can be estimated by using a
kernel density estimator [17] as

f̂ ðyjhxÞ ¼
1

M

XM
j¼1

kHðy� y00ðjÞÞ, (12)

where kH is the kernel function with a bandwidth matrix H. If the parameters are sampled
according to a different probability density function gðxÞ then the probability density function of
the response may be estimated by

f̂ ðyjhxÞ ¼
1

M

XM
j¼1

f ðx00
ðjÞjhxÞ

gðx00
ðjÞÞ

kHðy� y00ðjÞÞ. (13)

The suitability of different probability density functions of the parameters may be tested using
Eq. (13) without re-sampling X00. If the function gðxÞ is close to f ðxÞ then a smaller number of
samples, M, would be required. However, the only requirements for X00 are that gðxÞ � 0 in the
same region where f ðxÞ � 0 and that a sufficiently high number of samples M is generated. In
practice uniform or Latin hypercube sampling of the parameters over the likely parameter
subspace is sufficient. Further time-savings can be achieved by only evaluating Eq. (1) for a small
fraction of M and then interpolating for the remaining samples.
Replacing f ðy0ðiÞjhxÞ in Eq. (5) by the approximation given in Eq. (13) yields

lðhxÞ ¼ �N log M þ
XN

i¼1

log
XM
j¼1

exp½log f ðx00
ðjÞjhxÞ � log gðx00

ðjÞÞ þ log kHðy
0
ðiÞ � y00ðjÞÞ�.

ð14Þ

Note that the only term in Eq. (14) that depends on hx is the probability density function of the
parameters, f ðx00

ðjÞjhxÞ. All of the other terms can be pre-calculated before entering the optimisation
loop. Also note that the sum j ¼ 1 . . .M does not need to be calculated for every j (see Appendix
A for detailed explanation).
For the kernel density estimation a multivariate normal kernel was used, given by

kHðyÞ ¼ jHj�1kðH�1yÞ, (15)

where

kðyÞ ¼ ð2pÞ�m=2e�yTy=2. (16)

A careful choice for the bandwidth matrix must be made to ensure accurate estimation.
Satisfactory results have been obtained using a variation of the rule of thumb for multivariate
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kernel density estimation presented in Ref. [17], where the bandwidth matrix is given by

H ¼ M�1=ðdþ4ÞR1=2
y , (17)

where d ¼ minðn;mÞ is the number of dof in the response.
3. Application to a cantilever beam

3.1. Simulated example

The simulated example is a cantilever beam with a point mass at an uncertain position along the
beam length, shown schematically in Fig. 1. The beam has length l ¼ 1m, a rectangular section of
100 10mm2 and is made of steel with Young’s modulus E ¼ 210GPa and density
r ¼ 7800kg=m3. The discrete mass is m ¼ 0:100kg and its position x follows a normal
distribution X�Nðm ¼ 0:75m;s ¼ 0:05mÞ.
If the x variation is small enough, the natural frequencies vary almost linearly and the

perturbation approach becomes attractive because of its computational efficiency. Fig. 2 shows
the variation of the natural frequencies with the position of the discrete mass and demonstrates
that the perturbation approach is only suitable for the lower natural frequencies and for small
position variations.
Figs. 3 and 4 show the log-likelihood given by Eq. (5) for the simulated cantilever beam for the

perturbation and Monte Carlo approaches. In both cases the function is very steep for mean
values away from the real mean and for low variance, but the function is very flat for large
variances. More importantly the log-likelihood only has one maximum, which is very close to the
real parameter values, and to which the estimation procedure will converge for any initial set of
parameters.
For the analysis of the results, two (relative) errors are defined. The real error is the error

between the estimates and the population statistics

�r ¼
m̂x � mx

mx

or �r ¼
ŝx � sx

sx

. (18)

The effective error is the error between the estimates and sample statistics

�e ¼
m̂x � x̄

x̄
or �e ¼

ŝx � sx

sx

. (19)
x

l

m

Fig. 1. The simulated cantilever beam with a discrete mass at an uncertain position.
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Fig. 3. The log-likelihood given by Eq. (11) for the perturbation method. þ, real; , effective; �, estimate.
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The effective error is often the most relevant error, since for a fixed set of N measurements the
sample statistics are the best one can really ever hope to know.
As mentioned above, the best results for the perturbation approach are obtained when the

linearisation is centred on the mean value of the parameters. However, this point is not known
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Fig. 4. The log-likelihood given by Eq. (14) for the Monte Carlo method. þ, real; , effective; �, estimate.
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beforehand and a guess must be made. Fig. 5 shows the effect performing the linearisation away
from the real mean has on the estimation error. The error in the mean does not change
significantly if x0 is within mx � 3sx. We can see that the minimum error is not necessarily
obtained at the real mean.
The accuracy of the Monte Carlo approach depends on the number of samples, with an error

estimate that decreases as M1=2, as evidenced by Fig. 6 for this example.
In this particular example there is only a single parameter, and therefore measuring a single

natural frequency (for example the first) would enable the parameter to be estimated. Fig. 7 shows
the effect of using more than one natural frequency to estimate the discrete mass position. The
extra information available using more natural frequencies should allow more averaging of the
measured data and therefore more accurate estimates. However, this example highlights an
undesirable property of the perturbation approach, where adding more redundant information
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Fig. 6. The influence of the number of Monte Carlo samples on the effective estimation error. mx; sx.
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(in the sense of adding new natural frequencies rather than more samples) can make the estimates
worse. The problem is caused by the loss in accuracy of the linearised solution for the higher
natural frequencies, and Fig. 2 has already demonstrated that the higher natural frequencies vary
more with mass position than the lower frequencies.
As more measurements are taken the estimates obtained by both approaches generally improve,

as shown in Fig. 8. The convergence of perturbation approach is limited by the response
nonlinearities as mentioned above.
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3.2. Experimental validation

For experimental validation a similar system to the one analysed in Section 3.1 was created, and
is shown in Fig. 9. The model was modified to account for the accelerometer (with mass ma ¼

34:1 g positioned at xa ¼ 20mm from the beam free end) and to allow for some translational and
rotational clamping flexibility (K and Kt), as illustrated in Fig. 10. The beam has length l ¼ 60 cm,
a rectangular section of 70 12mm2 and is made of steel with Young’s modulus E ¼ 210GPa
and density r ¼ 7800kg=m3. The discrete mass is m ¼ 93:6 g and its position x follows a normal
distribution X�Nðm ¼ 15 cm;s ¼ 5 cmÞ.
The clamping stiffnesses were determined by model updating of the beam without the mass, by

minimising the relative error in the first three natural frequencies. The estimated stiffnesses were
K ¼ 91:466 106 N=m and Kt ¼ 109:825 103 N=rad, and the first four measured and updated
natural frequencies are given in Table 1. The resulting model is clearly excellent, although with
two unknown parameters and three natural frequencies some residual error will exist, as shown in
Table 1.
Fifty samples of x were generated and rounded to the nearest mm. The discrete mass was

positioned accordingly and the measurements of the first natural frequency taken. Fig. 11 shows
these measurements and compares them to the response of the model. Even after model updating
there is a small bias D between the measured natural frequencies and the ones derived by the
model. To reduce these modelling errors (which would otherwise yield an offset in the mean
estimate) a bias is introduced in Eq. (1) as

y ¼ fðxÞ þ D. (20)
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Fig. 10. The model of the experimental cantilever beam system.

Fig. 9. Experimental set-up of the cantilever beam with a lumped mass at an uncertain position.

Table 1

Model updating of the clamping stiffnesses of the beam without the discrete mass

Mode Measured (Hz) Updated (Hz) D (Hz)

1 25.9049 25.8906 �0.0143

2 162.9649 163.1180 +0.1532

3 456.7434 456.5961 �0.1473

4 890.0572 889.5894 �0.4678

J.R. Fonseca et al. / Journal of Sound and Vibration 288 (2005) 587–599 597
Table 2 shows the estimates of mx and sx compared with their real and effective counterparts. The
estimates obtained by the Monte Carlo method are only slightly closer to the effective values than
those obtained by the perturbation method. In this case the perturbation method performs well,
and this is because variation of the first natural frequency is almost linear.
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Table 2

Estimated mean and variance for the experimental example

mx (mm) sx (mm)

Real 150.0 50.0

Effective 151.5 49.5

Perturbation estimate 149.5 50.4

Monte Carlo estimate 153.4 48.5

J.R. Fonseca et al. / Journal of Sound and Vibration 288 (2005) 587–599598
4. Conclusion

This paper has described methods to quantify the parameter uncertainty from experimental
data based on the Monte Carlo and perturbation approaches. These methods were validated using
numerical and experimental examples. Although very efficient, the perturbation approach has
problems when the linear approximation to the response is poor, and can lead to more
information giving higher parameter estimation errors. The Monte Carlo approach works well,
but care must be taken to ensure that the computational effort is realistic.
The next stage is to extend the methods to applications with several parameters and random

fields, and to better deal with modelling and/or measurement errors.
Appendix. Sum of numbers in logarithmic representation

Consider the expression

b ¼ log
XM
j¼1

exp aj. (A.1)
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Let k be the index of the maximum aj, then Eq. (A.1) can be rewritten as

b ¼ ak þ log 1þ
X
jak

expðaj � akÞ

 !
, (A.2)

where aj � akp0. All terms where aj � ak � 0 are negligible since expðaj � akÞ � 1. b can then be
approximated within a tolerance � by

b ¼ ak þ log
X

aj�akX log �=M

expðaj � akÞ

0
@

1
A. (A.3)
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